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Summary 

Two linearized problems in free-surface hydrodynamics are discussed. The first concerns flow due to a 
submerged line vortex in a running stream, and the second investigates three-dimensional flow about a moving 
pressure distribution at the surface of the fluid. Closed-form solutions to both linearized problems are well 
known, and therefore are not of interest; however, it is shown that the solution of either problem by a 
boundary-integral technique utilizing "simple" (Rankine) sources as fundamental singular solutions leads to 
Fredholm integral equations of the second kind, for which the irregular frequencies do not occur discretely, but 
as a continuum. Consequently, Neumann-type iteration schemes for the solution of these equations necessarily 
diverge for any Froude number. Ramifications of this result in the attempted numerical solution of the 
corresponding non-linear problems are discussed, and the convergence difficulties encountered by Hess [1] are 
analyzed. 

I. Introduction 

This study is primarily concerned with the numerical  solution of  the singular, Fredholm 
integral equations of  the second kind which arise in the use of  boundary- integral  methods 
and surface-singularity techniques to formulate  problems in potential  flow. The use of  
such techniques is natural,  since they possess the obvious advantage of  reducing by one 
the number  of  dimensions involved in the statement of  these problems. In addition, they 
permit  the boundary  condit ion either at infinite depth within the fluid or on some 
horizontal  bo t tom to be satisfied identically. 

Integral-equat ion methods have been used extensively to solve problems in hydrody-  
namics, and are reviewed by Yeung [2], with emphasis on applications involving free-surface 
flows. Some examples of  two-dimensional,  non-linear, free-surface flow problems which 
have yielded to numerical  solution by these methods  may  be found in papers by Hess [1], 
Vanden  Broeck and Tuck [3], Forbes  and Schwartz [4], Forbes  [5] and Smith and 
Abd-el-Malek [6]. Solutions to linearized problems in three dimensions have also been 
sought by integral-equation techniques, following the pioneering work of  Hess and Smith 
[7,8]. Their method  has been improved somewhat  by Landweber  and Macagno  [9], who 
also discuss its application to potential  flow about  ship hull forms. Dawson  [10] developed 
a surface-singularity technique for the solution of appropriately linearized ship-wave 
problems in two and three dimensions, and G a d d  [11] has considered the solution of  
non-linear,  three-dimensional,  free-surface problems by  a similar technique. 
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The application of boundary-integral methods to linearized potential-flow problems 
typically results in a Fredholm integral equation of the second kind, of the form 

o(x) = n(x) + x f K(x, de, (1.1) 

in which ~ is a parameter, and the unknown function a(x) might represent a source 
strength, for example. Equation (1.1) can obviously be generalized to the case of two 
independent variables x and y. 

Equation (1.1) is presumed to possess a unique solution o(x) ,  except when the 
parameter ~ is an eigenvalue of the homogeneous equation, obtained by setting H(x)= 0 
in equation (1.1). In this case, equation (1.1) either possesses no solution, or else the 
solutions cease to be unique, by the Fredholm theorems (see, for example, Courant and 
Hilbert [12]). 

The numerical solution of equations of the form (1.1) may be carried out conveniently 
by the Neumann iteration scheme, which is particularly useful when limitations in 
computer memory preclude the direct numerical inversion of the equation. An initial 
estimate o (°) ts made for the unknown function, and substituted into the right-hand side of 
the equation. The left-hand side now yields a new estimate o 0), which in turn may be 
substituted in the right-hand side to yield o (2), and so on. It is known (e.g. Courant and 
Hilbert [12]) that the sequence ( a  tn) } of approximations converges to the true solution 
a ( x )  provided that [A[ is less than the absolute value of the smallest eigenvalue of the 
homogeneous problem. In addition, the method is often observed to converge when 
applied to non-linear integral equations. 

In this paper, the solutions by integral-equation techniques for two-dimensional flow 
due to a line vortex submerged in a running stream, and for three-dimensional flow about 
a moving pressure distribution, are considered. In each problem, it is shown that the 
eigenvalues occur as a continuum lying along the entire negative real axis, rather than as 
discrete values. Consequently, eigenvalues of infinitesimal magnitude exist, and the 
Neumann iteration scheme never converges. Application of this result to the design of 
numerical methods for the solution of the corresponding non-linear problems is discussed. 

2. Flow due to a submerged vortex 

Consider a stream of infinite depth flowing from left to right with a steady speed c far 
upstream. A cartesian coordinate system is defined with the y-axis pointing vertically and 
the x-axis situated along the position of the undisturbed free surface. A vortex of strength 
K is present at the point (0, - h ) ,  and has its circulation in the clockwise direction, 
following Hess [1]. The fluid is subject to the downward acceleration of gravity, g, and 
~(x)  denotes the position of the free surface as a function of x. 

The problem is immediately non-dimensionalized by referring all lengths to the depth h 
and velocities to c; the velocity potential q~ and stream-function ~k are rendered dimension- 
less by reference to ch. The two dimensionless parameters of the flow are the Froude 
number F =  c(gh) -1/2 and vortex strength ~ = K(ch) -1. 

The equations of linearized flow are derived, following Wehausen and Laitone ([13], p. 
463), by the usual development of q,, ~p and ~/as perturbation expansions in the parameter 
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~, of the form 

, ( x , y )  = x + , , l ( x , y )  + O(c2), 

q,(x, y)  = y  + ,qq(x ,  y)  + O( ,2) ,  

rl( x ) = (.Ul( x ) + O( {2). 

(2.1) 

Within the fluid, qh and ~1 satisfy the Cauchy-Riemann equations 

qhx = g'ay, (2.2a) 

'1 ,  = -~1~, (2.2b) 

except at the vortex, where the complex potential fa = qh + i~l is of the form 

i 
f l ~ - - ~ l n ( z + i )  as z ~ - i ,  (2.3) 

in terms of the complex variable z = x + iy. The radiation condition, that no waves be 
present infinitely far upstream, _yields the condition 

f a r O  as z ~ - ~ ,  (2.4) 

and the Bernoulli and kinematic surface conditions give rise to the well-known linearized 
equations 

F2qh~+H 1 = 0  on y = 0 ,  (2.5a) 

and 

H l ~ = ~ b  on y = 0 .  (2.5b) 

The solution of equations (2.1)-(2.5) is given by Wehausen and Laitone ([13], p. 489). 
A boundary-integral formulation of the problem is now derived using the Cauchy 

integral theorem. (A different, but entirely equivalent, procedure was adopted by Hess [1], 
and consisted of distributing vorticity across the free surface). The complex potential f l  is 
assumed to be of the form 

fa = ~ [ln(z + i) - ln(z - i)] +~-a, (2.6) 

where the second term, corresponding to a vortex of opposite circulation at the image 
point z = i above the free surface, has been added to satisfy the radiation condition. 
Cauchy's integral formula is applied to the derivative X(Z)  = d ~ l / d Z  of the wave-making 
term ~ l (Z)  in equation (2.6), along the path shown in Fig. 1. Since X (z) is continuous and 
vanishes as z---> - i ~ ,  the contributions from either side of the branch cut cancel, and 
those from the semi-circular arc at infinity and the circular arc about the vortex are 
separately zero. In the limit as the semi-circular arc by-passing the point x + i0 on the free 



(2.7) 

1 1 f ~ q q , ( t ,  0) dt 
q~ax(X, 0) qr(x 2 + 1) ~r t----~ ' 

is obtained, where the improper integral is to be interpreted in the Cauchy principal-value 
sense. 

The desired equation is obtained by taking the real part of equation (2.7), which gives 

in view of equation (2.6). Finally, the quantity ~lx appearing on the right-hand side may 
be eliminated by means of equations (2.2b) and (2.5) to yield 

1 F2 f~q~,,,(t, O) dt (2.8) 
%(x, o)= ~(x2+ 1) g _ t - -~ '  

.which is a singular, integrodifferential equation of the second kind. 
The eigenvalues of equation (2.8) are constants X satisfying the corresponding homoge- 

Y 
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surface is made to be of zero radius, the result 

1 f~  X(t)dt 
x ( x )  = - ~ , - - - ' - ~ o  tTx 

X 

Figure 1. Contour of integration in the physical plane z = x + iy for the submerged vortex problem. 
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neous equation 

d u ( x )  _)k/~ ~ dZu(t )  dt  (2.9) 
dx J ~ _  dt  2 t - x ' 

where the u(x )  are associated eigenfunctions. Assume that 

U(X) = e imx, (2.10) 

for some real m ~ 0; then equation (2.9) yields 

eim~d~ 
i = - m X f  ~ 

J 

for the determination of X, after the change of variable ~ = t -  x. The integral on the 
right-hand side of this expression has the value icrsgn(m) (see Abramowitz and Stegun 
[14], p. 78, formula 4.3.142), and consequently, 

1 
), - ( 2 .11 )   lml" 

Thus, any function of the form (2.10) is a possible eigenfunction of equation (2.8) without 
restriction on the values of the constant m, and by equation (2.11), any negative real 
number is therefore an eigenvalue. By comparison with equation (2.8), the values of the 
Froude number at which the Fredholm determinant vanishes are F =  Im 1-1/2, and it is 
therefore to be expected that equation (2.8) cannot be solved by the Neumann iteration 
scheme for any F ~ 0. Notice that the frequency of a linearized wave in dimensional 
variables is g(27rc) -1, which in terms of the present dimensionless quantities becomes 
(2 ~rF 2)- 1; consequently, the irregular frequencies of equation (2.8) are (2 ~r)- 1 [m[ for any 
real number m. 

3. F low about  a m o v i n g  pressure distr ibution 

3.1. Formulation 

Consider a distribution of pressure having characteristic length 2L and width 2B moving 
from right to left across the surface of a fluid, with speed c relative to a stationary 
observer. With respect to a cartesian coordinate system moving with the pressure distribu- 
tion and having the z-axis pointing vertically, the fluid flows steadily from left to right, in 
the direction of the positive x-axis, and its speed infinitely far upstream is c. The pressure 
distribution is assumed to be of the form P o ~ ( X , y ) ,  where the constant P0 has the 
dimensions of pressure and represents the maximum strength of the distribution. The fluid 
is assumed to be inviscid and incompressible, and to flow without rotation, and is subject 
to the downward acceleration of gravity, g. 

Dimensionless variables are defined by choosing c as a reference velocity and L as a 
reference length. The velocity potential ¢ is made dimensionless with respect to the 
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product cL. A particular flow is thus characterized by the length-based Froude number 

C 
F (gL)'/2' 

the dimensionless half-width 

B 

and the strength 

e0 
0gL 

of the pressure distribution. 
In the interior of the fluid, the velocity potential ~ satisfies Laplace's equation 

V 2d~ = ~xx q- ~yy q- dPzz = O, (3.1) 

and is also subject to the condition that the flow be uniform at infinite depth within the 
fluid. If the unknown free-surface elevation is described by the equation z = ~'(x, y), then 
the usual kinematic free-surface condition and Bernoulli equation may be written 

and 

q~'~ + q~y~'y = q~ on z = ~" (3.2) 

1 17'2 [..t2 2 ~,  t ~ , x + ~ y + ~ 2 ) + ~ ' + a ~ = ½ F  2 on z = ~ ,  (3.3) 

respectively. The pressure distribution function ~ ( x ,  y)  is assumed to vanish as x 2 + y2 __+ 
~ ,  and so the radiation condition, that no waves be present far upstream, can be written 

~ x ~ l , ~ y ~ 0 ,  q~z~0 and ~ 0  as x ~ - ~ .  (3.4) 

The dependent variables 'b and ~ are now expressed as regular perturbation expansions 
in the parameter a, analogously to equations (2.1). For completeness, we shall retain the 
higher-order terms, giving 

~(x,y,z)=x+ ~ otJdPj(x,y,z), 
j = l  

~ ' ( x , y ) =  ~ odZj(x,y). 
j= l  

Clearly each function ~j satisfies Laplace's equation (3.1), subject to the conditions 

(3.5) 

~ j ~ 0 ,  x T ~ j ~ 0  as z ~ - o o ,  (3.6) 



and the radiation condition (3.4) gives 

VdOj~0 and Z j ~ 0  as x - - * - o ¢ .  
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(3.7) 

The functions ~j evaluated at the free surface z = f ( x , y )  are expressed in terms of 
Taylor-series expansions about the plane z = 0, as in Section 2. The kinematic condition 
(3.2) may thus be written symbolically as 

ZL(x, y ) = d~L(x, y, 0), 

Zjx(x, y) + Rj(x ,  y) = t~jz(x, y, O),j > 2, 

and the Bernoulli equation (3.3) yields 

F2d~lx(x, y, O) + Zl(x ,  y) + ~ ( x ,  y) = O, 

F2t~jx(x, y, O) + Zj(X, y) + a j ( x ,  y) = O,j > 2, 

(3.8a) 

(3.8b) 

(3.9a) 

(3.9b) 

where the quantities Rj and Qj are complicated functions of sums of products of 
lower-order terms and their derivatives. 

The integral equations satisfied at each order of the expansion (3.5) are derived by 
applying Green's second formula to the functions ¢#j, within the volume V shown in Fig. 
2. This volume is contained within the hemi-spherical surface So~ at infinite depth within 
the fluid, the surface S r which consists simply of the plane z = 0 punctured by a small disk 
of radius c centred at the point Q, and the hemi-spherical surface S, of radius c and centre 

7 ¥ 

- 

Figure 2. Domain of integration used to derive the integral equations for the pressure distribution problem. 



306 

Q. The singular solution of Laplace's equation (3.1) is taken to be a Green function of the 
form 

1 
= - -  + o ~ ' ( P ,  Q) ,  (3.10)  G(P, Q) Re O 

where 

R~,Q= [ ( p - -x )  2 + ( o - y )  2 + ( r -  z)2] 1/2 

is the distance between points P(O, o, r) and Q(x, y, z), and ov¢'is a harmonic function 
which is regular in the volume V and on its surface. Thus 

8G B*J)dS = 0, (3.11) g(o,  
where S = Soo + SF + S, is the surface of volume V, and n is a unit normal vector to S, 
chosen to point into volume V. 

Equation (3.6) indicates that the portion of the integral in equation (3.11) over the 
surface So~ vanishes, leaving only the contributions from surfaces S r and S c. Since 
o~(P, Q) is continuous as P ~ Q, the contribution from surface S, becomes 

limffs.( *j 1 0 , j )  , ' -*0 i[ 2 ~ an dS, 

which has the limiting value - 2 ~ r * j ( Q ) .  On the surface SF, ~/an  = - ~ / O z ,  so that 
equation (3.11) becomes 

( OG(P, Q) O*s(P) } 
2~r*j(Q) = - ffs a(e ,  Q ) - -  d0do. (3.12) F ar 0r 

The integral equation for the linearized problem is derived from equation (3.12) with 
the use of (3.8a) and (3.9a) and becomes 

2~r*l(Q) = - f f s g ( P ,  Q)~o(P)do d° 

{ , l ( p  ) OG(P, Q) + F2G(p, Q) 0 2 ( I [ ~ l ( P )  }dpdo. (3.13a) 
- . . f o  o ,  002 

Similarly, equations (3.8b) and (3.9b) yield the integral equations 

2=o,(0)= ffsG(,, Q)[.:(e)-Q,o(e)]dodo 

for the higher-order functions *j, j >_ 2. 
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3.2. Simple (Rankine) source function 

The Rankine source potential is defined by setting o~'(P, Q ) =  0 in equation (3.10). Now 
require that both P(O, o, 0) and Q(x, y, 0) be restricted to the surface SF, and define 

1 ff  ~(P)  - -  dodo 
Hi ( Q)  = 2~r J,fSF Rpo 

and 

1 1 P ) ] d o d o  
/ 4 j ( Q )  =  ffsr-U  Q[Rj(t,)-Qjo( 

f o r j  > 2; then (3.13) yield the integrodifferential equations 

F2 f f  1 cq2Oj(P) (3.14) 
• j ( Q )  = Hi (Q)  - 2~r JJsFReQ Op ---~ dpdo 

for each of the functions ~j, j > 1. 
The eigenvalues of equations (3.14) are determined from the homogeneous equation 

o~ o~ u~0(O _, o )  d d o  
u(x, y)= xf_off_  [(p__ X) 2 q-(0__y)211/2 p , (3.15) 

where )~ and u(x,  y )  are the eigenvalue and eigenfunction, respectively, and the punctured 
surface S r has been replaced by the complete plane z = 0, in view of the weak (integrable) 
nature of the singularity of the kernel R/,~. Assume that 

u(x ,  y )  = e imx+iny, (3.16) 

for real numbers m, n 4= 0; then, after the changes of variable s = p - x, t = a - y ,  equation 
(3.15) becomes 

~ e i m s + i n t  

l=- m f f - - ~ - - ~  [ s2 + t211/2 dsdt .  

The integral on the right-hand side of this equation has the known value 2 ~r(m 2 + n 2)- 1/2, 
which may be shown by multiplying the integrand by exp ( -  c[s 2 + t 2 ]1/2), c > 0, changing 
to polar variables, then evaluating the integral by the calculus of residues in the limit 
c ---, 0. Consequently, 

( m2 + n2) 1/2 

21rm 2 , (3.17) 

which is a natural generalization of equation (2.11) for three-dimensional geometry. 
Evidently any function of the form (3.16) is an admissible eigenfunction of equation 
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(3.15), and equation (3.17) again indicates that the eigenvalues form a continuum on the 
entire negative real axis. 

3.3. Havelock Green function 

We now investigate the consequences of utilizing the classical source function of Havelock 
as the singular solution of Laplace's equation. This is a function G(P, Q) which, in 
addition to satisfying Laplace's equation (3.1) and boundary conditions (3.6), also satisfies 
the linearized surface condition 

OG(P, Q) + F2 O2G(p, Q) = O. (3.18) 
~. ~p2 

In order to remain consistent with equation (3.10), the function G(P, Q) meeting the 
above requirements is written in the form 

G ( P , Q ) = - -  
1 1 

Re¢ R~, o 

1 f2~ f ° °exp(k ( ( z  + ~') + i [ ( x -  p) cos O + ( y -  o) sin O])) dkdO, 
~r ~o ~0 kF 2cos 2 6 - 1  

(3.19) 

where 

R~,Q= [(p--  x) 2 + ( a - y )  2 +(~'+z)2] 1/2. 

The function G(P, Q) in equation (3.19) is the well-known Green function of Havelock; 
although the integral on the right-hand side is formally divergent, due to the presence of a 
pole singularity in the integrand, the expression is rendered meaningful by interpreting the 
improper integral (with respect to k) in the Cauchy principal-value sense, and then adding 
to it some multiple of a free-wave term, chosen to satisfy the radiation condition (3.7). The 
result is classical, and is given by Wehausen and Laitone ([13], p. 484). In the following, it 
will be assumed that such an interpretation has already been given to equation (3.19). 

The double-integral term in equation (3.19) is not well-behaved when "r ~ 0 for z = 0, 
and consequently, equation (3.18) is not satisfied in this limit. Curiously, the correct 
surface condition satisfied by this Green function when z = 0 appears to have been given 
in explicit form only quite recently. (See Noblesse [15]). The integral equations (3.13) are 
not satisfied for this choice of Green function since ,~ (P ,  Q) is no longer continuous as 
P ~ Q when z = 0, and to derive the correct result it is necessary to return to equation 
(3.11). 

By the boundary condition (3.6), the contribution from surface S~ is again zero. 
However, the integral over surface S, is now also zero, as may be seen by transforming to 
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spherical polar coordinates and then allowing ~ ~ 0. Thus equation (3.11) yields simply 

SSs 3, -'O'r 

which, in view of the surface conditions (3.8) and (3.9) satisfied by the functions l j  and 
the condition (3.18) satisfied by G(P,  Q) for P :~ Q, gives 

  °l) oao = JJs:  oao 
and 

(_~:o o% ) (°o- ~- )d~,d,, for j r~ f f~ %-Fjp~ - o-~/ dpdo= f f~f -Rj >_2. (3.20b) 

Following Miloh and Landweber [16], the integrals on the left-hand sides of equations 
(3.20) are transformed according to the identity 

o~o o% _~ (+.oG o% ffs %op~-o-ff~--/ dodo= ~'c,t :op - -  - G--~-p ) l,ds, j > 1, (3.21) 

which follows after integration by parts and the application of Green's theorem in the 
plane. The circular path C, formed by the intersection of surfaces S, and Sv is traversed in 
the anti-clockwise direction, and 1, and ds denote the direction cosine of the normal to C, 
with the x-axis, and an element of arc-length on C,, respectively. 

The integral on the right-hand side of equation (3.21) is evaluated in the limit c ~ 0 by 
parametrizing the curve C, and observing that, since Ot~j/Ox is continuous at the point Q, 
the second term vanishes, leaving 

~c/+°G 0% 
k j O0 - G--~-p)l ,ds 

ic 2~- 2~r oo k c o s  Oe -ik¢c°s(t-O) 
-+ l im~-~J(Q)fo  c°stdtfo fo dkdO. ~--,0 k F  2 cos 2 0 - 1 

(3.22) 

The change of variable ~ = kc enables the explicit evaluation of the limit c ~ 0, giving 

i 2~r 2¢r oo e - i ~ c o s ( t - 0 )  

f0 cos0 
The improper integral with respect to ~ may be evaluated immediately by multiplying the 
integrand by e -¢~, c > 0, and the integrations with respect to t and 0 are then inter- 
changed. Since the limit c ~ 0 is ultimately intended, the above expression becomes 

lim i~ j (Q)  f 2 .  dO f2~ cos tdt  
~--.0 ~rF 2 Jo cos0Jo c + i ( c o s t c o s 0 + s i n t s i n 0 ) "  
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The innermost integration may be shown to give the result (2~r cos 0) / i  for c --, 0, using 
the calculus of residues, so that equation (3.22) finally yields 

~G ~dpj) 47r~j(O) 
lim(~ (d~jff~p - G ~ -  O l,ds- F2 (3.23) 
,-~0"c,\ 

Equations (3.21) and (3.23) are substituted into the left-hand sides of equations (3.20). 
The term on the right-hand side of equation (3.20a) is integrated by parts, and the final 
expressions are 

a f fsy  • I(Q) = -~--~ (O,o)Go(O,o,O,x,y,O)dodo (3.24a) 

and 

1 ffs[nJ(o,o)_Qjo(o,o)]a(o,o,O,x,y,O)dodo,j>__2. (3.24b) ~J ( e )  = -4---~ r 

Thus the choice of the Havelock Green function (3.19) as the singular solution to 
Laplace's equation gives rise to explicit expressions for the functions ~j at each order, 
rather than integral equations. The expression (3.24a) is the well-known linearized solution 
given by Wehausen and Laitone ([13], p. 598). 

4. Discussion and conclusions. 

Two-dimensional flow due to a vortex submerged in a running stream and three-dimen- 
sional flow induced by a moving distribution of pressure on the surface of a fluid have 
been investigated. In each case, the linearized problem formulated in terms of the 
fundamental singular solution to Laplace's equation yields a linear, singular, integrodif- 
ferential equation for the velocity potential, the eigenvalues of which occur as a continuum 
encompassing the entire negative real axis. In a general setting, this result is entirely to be 
expected both from the physical and mathematical viewpoints; physically, it is simply a 
statement that standing waves of any frequency or wavelength are possible in an 
unbounded fluid, whilst mathematically, it is well known that non-compact (integral) 
operators may have a continuous spectrum. However, although the result is scarcely 
surprising, it is of considerable importance in the attempted numerical solution of these 
problems, which is the principal interest of the present study. In particular, it is clear that 
the Neumann iteration scheme, or some numerical equivalent of it, can never converge, 
regardless of the initial guess. 

To the extent that closed-form linearized solutions are known to both of the problems 
formulated in this study, the numerical solution of the linearized equations is of little 
interest. However, difficulties similar to those encountered in the attempted solution of the 
linearized equations persist also in the non-linear case, and we are prepared to offer the 
following conjecture concerning the properties of the corresponding non-linear integral 
equation for ~ on the exact (unknown) free-surface location: 



311 

CONJECTURE: Suppose the series (3.5) (or (2.1)) and the Taylor-series expansion of the 
velocity potential at the exact free surface in terms of quantities at the undisturbed surface 
level are both uniformly convergent whenever ]c~] < r C. Then, for each eigenvalue of the 
linearized equation, there corresponds a unique element in the spectrum of the non-linear 
equation, at least when ]a] < r,. 

The basis for this conjecture is the observation that the higher-order equations (3.8b) 
and (3.9b) in the expansion of the kinematic and Bernoulli conditions involve the identical 
differential operators to the linearized equations (3.8a) and (3.9a), and consequently, each 
integrodifferential equation (3.13b) involves the same integral operator as the linearized 
equation (3.13a). (This may also be shown to be true for the vortex problem in Section 2.) 
Three immediate consequences of this conjecture are now examined. 

Firstly, the above conjecture indicates that, if the Green function is chosen to be the 
fundamental solution to Laplace's equation, then the non-linear integrodifferential equa- 
tion should possess an infinite continuum of eigenvalues, similar to the behaviour of the 
linearized equations investigated in Sections 2 and 3. This would likewise be manifested in 
the failure of the Neumann scheme to converge to a solution at any Froude number, and 
for any initial guess. In order to examine the accuracy of this prediction, the non-linear 
equations for the case of flow due to a moving pressure distribution were programmed on 
a P R I M E  mini-computer, and their solution was attempted using the Neumann iteration 
process, for a wide variety of Froude numbers, and employing various different initial 
guesses. The iterates were ultimately observed to diverge in every case, as expected. 

A second consequence of this conjecture concerns instances in which the linearized 
integrodifferential equation possesses at most countably infinitely many eigenvalues, 
rather than a continuous distribution of them. This might be achieved either by the 
selection of a different kernel function, or perhaps by an appropriate truncation of the 
domain of integration. Then, for lal < r,, the non-linear equation is also expected to 
possess a countable spectrum, with each element corresponding to a unique eigenvalue of 
the linearized problem. 

The convergence difficulties encountered by Hess [1] may now be analyzed in the light 
of the foregoing remarks. Hess sought to solve the non-linear problem of flow due to a 
submerged line vortex using what appears to be a variant of the method of Hess and 
Smith [7,8]. This method employs an iteration procedure which is numerically equivalent 
to the Neumann scheme, and consequently, may be expected always to diverge, in view of 
the above conjecture and the fact that the linearized integral operator was shown in 
Section 2 to possess a continuous spectrum. This divergence was noted by Hess, but was 
nevertheless circumvented by the additional imposition of an "initial flat" on the problem, 
in which a portion of the free surface upstream of the vortex was arbitrarily chosen to be 
flat. Evidently this requirement is equivalent to a truncation of the domain of integration 
of the non-linear integral operator, which, by the above remarks, presumably now 
possesses a countable spectrum. Consequently, the method of Hess and Smith converges 
in a radius determined by the smallest eigenvalue of the non-linear operator. 

In a recent paper, Ursell [17] has shown how irregular frequencies in a Fredholm 
integral equation of the second kind may be eliminated by a judicious choice of the Green 
function (3.10). The third consequence of the above conjecture pertains to this result, since 
then it follows that, at least for Its] < re, such a choice of Green function evidentally 
eliminates irregular frequencies from the non-linear problem as well. Indeed, for the 
simple problems investigated in this study, the choice of the Havelock Green function 
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(3.19) (or the corresponding two-dimensional form given by Ursell [17]) leads to explicit 
solutions (3.24) at each order of the expansion (3.5), rather than integral equations. 
Equations (3.24) could be evaluated numerically and the series (3.5) carried in principle to 
any desired order, although in practice the difficulty of performing the numerical 
quadratures with accuracy, as well as the complexity of the functions R j ( x , y )  and 
Q ) ( x , y ) ,  j > 2, would appear to disqualify this semi-numerical approach as a viable 
method for the solution of the fully non-linear problem. Nevertheless, the evaluation of 
the second- and third-order terms might be valuable~ and an approach similar to this is 
advocated by Miloh and Landweber [16]. 

Since the choice of the Havelock Green function evidently eliminates irregular frequen- 
cies from both the linearized and non-linear problems, the latter could be formulated as 
an exact integral equation on the unknown free surface, with the Havelock function as its 
kernel. This non-linear equation should then yield to numerical solution by the Neumann 
iteration scheme. However, it is by no means clear whether the considerable advantage 
afforded by the use of this iteration scheme would adequately compensate for the 
enormous computational effort of evaluating the Green function (3.19) and its derivatives 
at each new iteration. In addition, this formulation might lead to ill-conditioning, in the 
sense that the Havelock function would need to be known to high accuracy to avoid 
divergence of the iterates. 

An alternative approach, based on the numerical method of Forbes and Schwartz [4], 
has been developed for the solution of the fully non-linear problem described in Section 3, 
and appears to give good results. An integral equation for the velocity potential is 
formulated in terms of the fundamental singularity RT,~, as in Section 3.2, and is solved 
by a Newtonian iteration process. Details of this method will be presented in a future 
publication. 
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